Basics of Fundamental Group

Math 450
William C.
Dec 17, 2020

Abstract
The goal of this project is twofold: Firstly, to introduce the basics of Fundamental group including the definition and the motivation befind the fundamental group, to calculate some examples, and to define an incluced homomorphism by using a continuous map.
secondly, applying the functovial property (Corollary 52.5 in Munkres, and we are using its countrapositive statement) to classify the follaing 47 topological spaces into 10 fundamental groups:
(1) $\mathbb{R}^{n}, x \in \mathbb{Z}^{+}$
(2) s^{\prime}
(3)~(8) A, D, O, P, Q, R
(a) s^{2}
spaces in these shopes
(10) $s^{\prime} \times s^{\prime}$
(II) $[0,1] \subset \mathbb{R}$ (a closed interval)
(12) $\frac{s^{\prime} x \cdots \times s^{\prime}}{n-\text { many }}$, or n-leated rose pare

$$
\begin{aligned}
& (13) \sim(31) \sim \\
& \text { sparee in theie } \\
& \text { shepe: }
\end{aligned}\left\{\begin{array}{l}
X, Y, Z, T, S, C, E, F, \\
G, H, I, J, K, L, M, \\
N, U, V, W
\end{array}\right.
$$

(32) $\{0\}$ (one-point space)
(33) D^{2} (a disk in \mathbb{R}^{n})
(34) a cone space
(35) a convex spuce $\subset \mathbb{R}^{n}$
(36) a star-like space $\subset \mathbb{R}^{n}$
(37) $\mathbb{R}^{3} \backslash$ (an unknot)
(38) $\mathbb{R}^{3} \backslash$ (a left handed trefoil)
(34) $\mathbb{R}^{3} \backslash$ (a right handed trefoil)
(40) a Möbius band
(41) a cylinder
(42) $R P^{2}$
(43) a Klein bottle
(44) M_{2}-space, $T^{2} ; s^{\prime} \times s^{\prime} \underbrace{\infty}_{g=2}$
(45) Mg space, $g=1,2, \ldots, n$
(configuration spaces, n-tori)
(46) A figure eight space or letter B
(47) $\mathbb{R}^{2} \backslash\{0,0\}$

Although if two topological spares have the same fundamental group then we cannot say they are homeomorphic, if two spaces have different groups, then we can say they are not homeomorphic.

Contents
1 Part I Motivations
7 Part I Theory (1) basic definitions and theorems of funchnemal group
24 Part II Theory (2) incluced homomorphisms, isomappisms, and functovial properties
40 Part II Examples and computations of fundamental group

57 Part I Conclusion
60 Appendix: A systematic way to compute knot group by using braid group and Seifert - Van Kempan Theorem
71 References

Part 1. Motivations

Goal: Determine whether two topological spaces are homeomorphic.

Ans: $\pi_{1}\left(s^{\prime}\right)=\mathbb{Z} \neq\{e\}=\pi_{1}\left(s^{2}\right) \Rightarrow s^{\prime} \neq s^{2}$

$$
\begin{aligned}
& \pi_{1}\left(\mathbb{R}^{\prime}\right)=\pi_{1}\left(\mathbb{R}^{2}\right)=\cdots=\pi_{1}\left(\mathbb{R}^{n}\right)=\{e\} \Rightarrow \text { we cannot use } \\
& \begin{array}{l}
\pi(x) \text { to listing pick } \\
1 R \text { and } 1 R^{2} \text {. }
\end{array}
\end{aligned}
$$

Why studying fundamental group $\pi_{1}(x)$?

1. It's an eventual application of investigeting spaces like complements of knots.
2. It can give an algebraic topo way (as an alternating) to prove Fundamental Theorem of Algebra without using analysis tools (in complex analysis), ie. by using fundamental group and winding number.
3. Henri Poincare' defined the fundamental group in 1895 and had his conjecture five years later (1900):
The only solution to $\pi_{1}\left(M^{3}\right)=1$ is $m^{3}=s^{3}$.
4. Thai 12.56 (Starbircl-Su)

Each 2-manifold in the following infinite list is topologically different from all the others on the list:

$$
S^{2},{\underset{i=1}{\#} \mathbb{R} \mathbb{P}^{2}, \underset{i=1}{\#} T^{2}}^{n}
$$

\Rightarrow By showing the associate groups of above are all clifferent, this can lead to a proof of the classification of 2 -manifolds that does not involve Euler characteristic, orientability, triangulations, in Topic 7 (Starbird-Su 11.1-11.5, Massey Wis. Chi \$5-57)

For example, Conway's ZIP proof (handle, cross-handle, cap, and cross-cap)
5. One more application is to prove Brouwer Fixed point theorem.
(ad) Let $D^{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$ If $f: D^{2} \rightarrow D^{2}$ is continuous, then f has a fixed point.

Non - ex of " \Leftarrow " of "Corollary 52.5 " 1 $\pi_{1}\left(\mathbb{R}^{3}\left(K_{1}\right) \simeq \pi_{1}\left(\mathbb{R}^{3} \backslash K_{2}\right)\right.$
$\forall K_{1} \simeq K_{2}\left(\Leftrightarrow \mathbb{R}^{3} \backslash K_{1} \simeq \mathbb{R}^{3} \backslash K_{2}\right)$ e.g. $K_{1}=$ right-handed trefoil kest $k_{2}=$ left-handed trefoil knal

Non-ex of " " " of "cor.52.5" 2.
$\mathbb{R}, \mathbb{R}^{2}, \mathbb{K}^{n},\{0\}$ (one-pt space) s^{2}, are rot homeomorphic but they are all homotopic $\left(\pi_{1}\left(X_{i}\right)=e=1\right)$

Part II. Theory (1)
Basic definitions and theorems of fundamental group

Def. A homotopy of two functions
Let $f, g: X \rightarrow Y$ be continuous.
Then $f \simeq g$ (f is homotopic to g)
if $\exists H: X \times I \rightarrow Y$ such that

$$
\begin{aligned}
& H(x, 0)=H_{0}=f(x), \forall x \in X . \\
& H(x, 1)=H_{1}=g(x)
\end{aligned}
$$

Then H is called a homotopy between f and g.

Think $\{H(x, \cdot), x \in[0,1]\}$ as a set of continuous functions continuously deformed f to g.

Def. Homotopy equivalence of spaces Two topological spaces X and Y are homotopy equivalent if

$$
\begin{aligned}
& \exists f: X \rightarrow Y \\
& \exists f: Y \rightarrow X
\end{aligned}
$$

such that

$$
g \circ f \simeq i d x
$$

and $f \circ g=I d_{r}$.

Let X be a topological space.
Def. α is a continuous function that maps a closed interval I to a $\alpha(r)$ topological space X, then α is called a path.

$$
\alpha:[0, r] \rightarrow X, r \geqslant 0, r \in \mathbb{R} .
$$

e.g. Let $\alpha: I \rightarrow M$

* α can cross or repeat itself.

If α is not normalized,
$W(t) s=\alpha(r t)$ is normalized
$\because w(0)=\alpha(0)$, where $\alpha(t):[0, \gamma] \rightarrow X$
$w(1)=\alpha(r), \quad w(t):[0,1] \rightarrow X$
$\left.\begin{array}{l}\alpha(0): \text { initial point } \\ \alpha(1): \text { final point }\end{array}\right\}$ endpoints
α is a loop if $\alpha(0)=\alpha(1)$
Def. If $\alpha i\left[0, r_{1}\right] \rightarrow X$ and $\alpha\left(r_{1}\right)=\beta(0)$

$$
\beta:\left[0, r_{2}\right] \rightarrow X
$$

then $\beta * \alpha$ is a product defined as fulas

$$
(\beta * \alpha)(t):= \begin{cases}\alpha(t), & 0 \leq t \leq r_{1} \\ \beta\left(t-r_{1}\right), & r_{1} \leq t \leq r_{1} f r_{2}\end{cases}
$$

$\beta * \alpha$ is a path that maps

$$
\left[0, r_{1}+r_{2}\right] \rightarrow X .
$$

Def. Path homotopic
Two paths α, β are path homotopic, i.e. $\alpha \simeq_{p} \beta$ or $\alpha \sim \beta$, if and only if $\alpha(0)=\beta(0), \alpha(1)=\beta(1)$
$\Leftrightarrow \exists$ a homotopy $H, H: A X I \rightarrow Y, A C X$
Y usually rake $A=[0,1]$
sit.

$$
\begin{aligned}
& H(0, t)=H_{0}=\alpha(t) \\
& H(1, t)=H_{1}=\beta(t), \forall t \in[0,1] \\
& H(x, 0)=\alpha(0)=\beta(0) \\
& H(x, 1)=\alpha(1)=\beta(1), \quad \forall x \in[0,1]
\end{aligned}
$$

Eg. (Exercise 12.4 stantird-Su)

Def Deformation Retract (see also Munkres $\$ 52$ Exercise 4)

A subspace Y of X is called a deformation retract of X if \exists a homotopy $F: X \times I \rightarrow X$
sit.

$$
\forall x \in X \text { and } \forall y \in Y
$$

1. $F_{0}(x)=x \in X$
2. $F_{1}(x) \in Y$
3. $F_{1}(y)=y \in Y$

$$
F^{\prime \prime}(1, y)
$$

eng.

Motivation
Want to find a way to group them (paths) together.

Def. The equivalence classes of paths containing α is denoted by $[\alpha]$.

$$
[\alpha]=\left\{\alpha_{i}: \alpha_{i}(0)=\alpha(0), \alpha_{i}(1)=\alpha(1),\right.
$$

and $\left.\alpha_{i} \sim \alpha\right\}$, where $i \in I$.
(The operation of the group, $\pi_{1}(x)$
Def Let α, β be paths with $\alpha(1)=\beta(0)$ Then their product is denoted as $\alpha \cdot \beta$, meaning that the path first moves along α, followed by moving along β, and it is defined explicitly by

15

Extend this def. of a product of paths to the def. of a procluct of path classes by defining equivalence class
normalized product

$$
[\alpha] \cdot[\beta]:=[\alpha \cdot \beta]
$$

"." is not always well-defined for all homotopy classes unless $\alpha(1)=\beta(0)$ To form a group, all homotopy classes must be referred to a same point x_{0} in X called based point.
erg. $\alpha \cdot \beta \cdot \gamma$

$$
\Rightarrow \alpha(0)=\alpha(1)=\beta(0)=\beta(1)=\gamma(0)=\gamma\left(v=x_{0}\right.
$$

Once "." is well-defined, the set of $1^{\text {st }}$-homotopy classes form a group called
$1^{\text {st }}$ - homotapy group, or Fundamental group, of Poincare Group and denoted as
$\pi_{1}\left(X, x_{0}\right)=\left\{\left[\alpha_{i}\right]_{i \in I}\right.$: equivalence classes of homotopic loops based at $\left.x_{0} \in X\right\}$

In general, instead of using loops S, we can use $S^{\prime \prime}$, then the n-th homotopy group is clenoted as $\pi_{n}(X)$

For $n \geqslant 2$, it might be more computable by using homology group H_{n}.
$\pi_{1}\left(X, x_{0}\right)=\left\{\left[\alpha_{i}\right]_{i \in I}\right.$: equivalence classes of homotopic loops based at $\left.x_{0} \in X\right\}$
i.e. $\rightarrow=\{$ closed normalized paths in X based at $\left.x_{0}\right\} \quad \underset{\text { Lquofienn space }}{\left\{\begin{array}{c}\text { pointed } \\ \text { homotopy }\end{array}\right\}}$

* Homotopies are pointed or endpoints are fixed

$$
\begin{aligned}
& \text { i.e. } H:[0,1] \times[0,1] \rightarrow X \\
& \text { sit. } H(x, 0)=H(x, 1)=x_{0}, \forall x \in[0,1] .
\end{aligned}
$$

Lemma 51.1 (Munkres)
Path homotopy is an equivalence relation.

Want to show:
(i) $\alpha \simeq_{p} \alpha$
(ii) $\alpha \simeq_{p \beta} \Rightarrow \beta \simeq_{p} \alpha$
(iii)

$$
\begin{aligned}
& \alpha \simeq_{p \beta}, \beta \simeq_{p} \gamma \\
& \Rightarrow \alpha \simeq_{p} \gamma
\end{aligned}
$$

Pf. us examples
What if $\alpha(t)=$ constant?

$$
\Rightarrow i d=e=\alpha_{0} \text { (idemfity) }
$$

(i) Take $H_{x}(t)=\alpha(t), \Rightarrow$ id $=e=\alpha_{0}$ cider backward? \Rightarrow inverse

(ii) Given $\alpha \approx_{p} \beta$

$$
\Rightarrow \exists H(x, t)
$$

Take. $\hat{H}_{x}(t)=H(1-x, t)$

(iii) Given r
$\beta \simeq \gamma \Rightarrow$

$\xrightarrow{\pi}$

Take

$$
G(x, t)= \begin{cases}H(2 x, t), & v x \in[0,1 / 2] \\ \tilde{H}(2 x-1, t), & \forall x \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

So, we have $i d_{x}=\alpha_{0}$ and α_{-1}, what if speeding up twice horizontally?

Answer: by using group multiplication we can prove a theorem that can lead to group associativity!

Thy $\alpha, \alpha^{\prime}, \beta, \beta^{\prime}$ are paths in a space X
sit. $\alpha \sim \alpha^{\prime}, \beta \sim \beta^{\prime}$, and $\alpha(1)=\beta(0)$, then $\alpha \cdot \beta \sim \alpha^{\prime} \cdot \beta^{\prime}$.

Pf.
Given $\alpha \sim \alpha^{\prime}$ and

$$
\beta \sim \beta^{\prime}
$$

Associativity of $\pi_{1}(x)$
The Given paths α, β, and γ where
the following products are well-definel

$$
\text { i.e. } \alpha(1)=\beta(0), \beta(1)=\gamma(0)
$$

Then $(\alpha \cdot \beta) \cdot \gamma \sim \alpha \cdot(\beta \cdot \gamma)$ and

$$
([\alpha] \cdot[\beta]) \cdot \gamma=[\alpha] \cdot([\beta] \cdot[\gamma])
$$

Sketch of PS.

If a path that doesn't move then it stays at the origin, and then it has a special name.

Def. Let X be a topological space and let x_{0} be a point in X.
A map $e_{x_{0}}:[0,1] \rightarrow X$ that ends every point of $[0,1]$ to the single point x_{0} is called a constant map or a constant path.

It is also denoted as $i d_{x_{0}}$ of α_{0}. (identity of $\left.\pi_{1}(x)\right)$

The 51.2 (simplified from Munkres)
$\left(\pi\left(X, x_{0}\right), *\right)$ is a group. That is
*" has 3 properties as follow.
to simplify, lets apply it to loops.
\Rightarrow 1) \exists identity. e

$$
\begin{aligned}
{[e]=\left[e_{x_{0}}\right]_{x_{0}}=\left[e_{x_{1}}\right] } & =\left[\alpha_{0}\right]=\text { constant loop. } \\
& =\left[\alpha^{0}\right]
\end{aligned}
$$

2) \exists inverse. α^{-1}
i.e. Given a loop α in X,
let α^{-1} denote the path by

$$
\begin{aligned}
& \alpha^{-1}(t)=\alpha(1-t) \\
& \text { s.t. }[\alpha] *\left[\alpha^{-1}\right]=[e]=\left[\alpha_{0}\right]
\end{aligned}
$$

3) Associativity

If $[\alpha] *([\beta] *[\gamma])$ is defined, so is $([\alpha] *[\beta]) *[\gamma]$, and they are equal.

Thy 51.3 (Munkres)

* it is generalized from associativity.

Let α be a path in X, and let $r_{0}, r_{1}, \ldots, r_{n} \in[0,1]$ be a partition of $[0,1]$. $0 \leq r_{0}<r_{1}<\cdots<r_{n} \leq 1$.
Let $\alpha_{i}: I[0,1] \rightarrow X$ be a path, and α_{i} is a restricted map of α, ie.

$$
\alpha_{i}(t)=\left.\alpha(t)\right|_{t \in\left[r_{i-1}, r_{i}\right]}
$$

Then $[\alpha]=\left[\alpha_{1}\right] * \cdots *\left[\alpha_{n}\right]$

Proof.
By incluction, based on the proof of associativity.

Part III: Theory (2)
Induced Homomorphism, Isomorphism, and Functorial Properties
$\pi_{1}\left(X_{i}\right)$ is a topological invariant.
That is if two spaces are homotopic then they have equivalent fundamental group up to isomorphism

Corollary $52.2 \Leftrightarrow 3$ a path r, X is path connected.
$x_{0}, x_{1} \in X$
They are
$\Rightarrow \pi\left(X, x_{0}\right) \underset{\uparrow}{\simeq} \pi\left(X, x_{1}\right)$
only algebraically the same up to isomorphism.
isomorphic

$$
[\alpha] \stackrel{\text { 'romorpnic }}{\longmapsto}\left[\gamma \cdot \alpha \cdot \gamma^{-1}\right]
$$

$\Rightarrow \pi_{1}(X)$ does not depend on base point X_{0}, if X is path-connected.

The isomorphism is unique if $\pi(x)$ is abelian.

Let $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{2}\right)$ be a continuous map sit. $f\left(x_{0}\right)=y_{0}$.

Def. Define a corresponding group homomorphism (induced)

$$
\begin{aligned}
f_{*}:=\pi_{1}(f): \pi_{1}\left(x, x_{0}\right) & \mapsto \pi_{1}\left(y, y_{0}\right) \\
{[\alpha] } & \longmapsto[f 0 \alpha]
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } x_{0}, x_{1} \in X, x_{0} \neq x_{1} \text { then } \\
& \left(b_{0}\right)_{ \pm} \neq\left(m_{1}\right)_{x} \\
& 15 \\
& \sin _{\left(h_{1}, x_{i}\right): \pi}^{\sin \left(\pi_{1}, x_{1}\right) \rightarrow \pi_{i}\left(Y_{1}, y_{0}\right) .} \\
& \left(h_{n}\right)_{y}=\pi, \pi_{1}(x, x) \rightarrow \pi\left(Y, y_{1}\right) \\
& \text { Since two domains } \\
& \pi_{1}\left(x, x_{2}\right) \neq \pi\left(x, x_{1}\right) . \\
& \Rightarrow \text { if } x_{0} x_{1} \text {, only one base point under } \\
& \left(h_{x}\right)_{+}=\left(h_{x}\right)^{2}=h_{*} \\
& \left\{\begin{array}{l}
\text { so, although if } x \text { is part } \\
\text { connected, } \pi_{1}(x) \text { does not }
\end{array}\right. \\
& \text { dep on } x_{0},\left(h_{x_{0}}\right)_{*} \text { is still } \\
& \text { depending on } x_{0} \text {. }
\end{aligned}
$$

There are numerous mathematical notions lobjects) and maps that are structure preserved (morphisms).

Objects:
sets, groups, rings, modules, vector spacer, topological spaces, smooth manifold, partially ordered sets.
Morphisms:
functions, group homomorphisms, ring homomorphisms, module homomorphisms, linear maps, continuous maps, smooth maps, ordered-preseraing functions

The structure-preserving maps from one category (object) to another are called functors.

In algebric topology, the map (induced homomorphism) is an example. The fundametal group functors map from the category of (pointed) topological spaces to the category of groups, ie. $\Pi_{1}: T_{0 p}^{*} \longrightarrow$ Gre where Top *denotes the category of pointed topological spaces, and Gre stands for the category of group. $\Pi_{1}:$ Top $^{*} \rightarrow$ Gre Consists of two data:
(i) an objects functor
$\pi_{1}:\left(X, x_{0}\right) \longmapsto \pi_{1}\left(X, x_{0}\right)$
(ii) a morphism functor

$$
\pi_{1}(f)=f_{*} \quad f \longmapsto f_{*}
$$

i.e. TI also sencls a continuous map f between tops. spaces to a homomorphism. between the corresponding fundamental groups.

Functorial properties

$$
\left[\begin{array}{l}
\text { Thm } 52.4 \\
\text { corollary } 52.5
\end{array}\right\} \text { in Munkres. or }\left\{\begin{array}{c}
\text { Thm } 12.24 \text { in } \\
\text { Starbird and } \\
\text { Su }
\end{array}\right\}
$$

\rightarrow If $X \simeq Y \Rightarrow f_{*}$ is a Group isomorphism.
Thm 52.4 means f_{*} is a group homomorphirm.

$$
\begin{aligned}
& \pi_{1}: C_{1} \rightarrow C_{2} \text { where } c_{1}=T_{\text {op }}^{*}, \quad C_{2}=G_{\text {re }} \rightarrow \because \pi_{1}\left(X, x_{0}\right)=\pi_{1}(x) \\
& \text { s.ti }\left\{\oplus O b\left(C_{1}\right) \mapsto O b\left(C_{2}\right)\right. \\
& \left\{\operatorname{De}^{\operatorname{Hom}}(X, Y) \rightarrow \operatorname{Hom}\left(\pi_{1}(X), \pi_{1}(Y)\right)=\operatorname{Hom}\left(\pi_{1}(X), \pi_{1}(Y)\right)\right.
\end{aligned}
$$

To show T_{1} is actually a funct or!

Thm 52.4 Group Howomorphism
$I f$$\left\{\begin{array}{l}h:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right) \\ k:\left(Y, y_{0}\right)\end{array}\right)\left(Z, z_{0}\right)$
then $(k \circ h)_{*}=k_{*} \cdot h_{*}$
pf. By def. $g_{x}([\alpha])=[g \circ \alpha]$

$$
\begin{aligned}
\text { ths }=(k \circ h)_{*}([\alpha]) & =[(k \circ h) \circ \alpha] \\
\text { rhs }=\left(k_{*} \circ h_{*}\right)([\alpha]) & =k_{*}\left(h_{*}([\alpha])\right) \\
& =k_{*}([h \circ \alpha]) \\
& =[k \circ(h \circ \alpha)] \\
& =[(k \circ h) \circ \alpha]=\text { lhs. }
\end{aligned}
$$

Corollary 52.5 Group Isomorphism Let $h:\left(X, x_{2}\right) \rightarrow\left(Y, y_{0}\right)$ be a homeorenphism. $\Rightarrow h_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$ is an isomorphism. Pf: ice. $\pi_{1}(X)=\pi_{1}(Y)$
Let $k:\left(Y, y_{0}\right) \rightarrow\left(x, x_{0}\right), k=h^{-1}$.

$$
\Rightarrow\left\{\begin{array}{l}
k_{*} \circ h_{*}=(k \circ h)_{*}=\left(h^{-1} \circ h\right)_{*}=i_{*} \\
h_{*} \circ k_{*}=(h \cdot k)_{*}=\left(h \circ h^{-1}\right)_{*}=j_{*} .
\end{array}\right.
$$

$\left(\begin{array}{c}\text { where } i \\ i \text { is an identity map of }\left(X, x_{0}\right) \\ j \text { is un identity mp of }\left(Y, y_{0}\right)\end{array}\right)$
$\Rightarrow i_{*}, i_{r}$ are identity group isomorphtions of $\pi_{1}\left(X, \pi_{0}\right), \pi_{1}\left(Y, y_{0}\right)$

$$
\Rightarrow k_{*}=h_{*}^{-1}
$$

Recall: $\pi_{1}(h)=h_{*}$

$$
\begin{aligned}
& \pi_{1}:\left(X, x_{0}\right) \mapsto \pi_{1}\left(x, x_{0}\right)=\pi_{1}(x) \\
& \pi_{1}:\left(Y, y_{0}\right) \mapsto \pi_{1}\left(Y, y_{0}\right)=\pi_{1}(y)
\end{aligned}
$$

In general, suppose C_{1} and C_{2} are two categories. (eng. group and topological space)
Def. A functor $F: C_{1} \rightarrow C_{2}$ consists of the following data:
(1) an object functor (a class-function)

$$
\begin{aligned}
F: o b\left(c_{1}\right) & \rightarrow o b\left(c_{2}\right) \\
c & \mapsto F_{c}
\end{aligned}
$$

(2) a morphism functor (a function on Hom-sets) $\forall a, b \in C_{1}, \exists$ a function F on $\operatorname{Hom}(a, b)$ such that
F: $\operatorname{Hom}(a, b) \rightarrow \operatorname{Hom}(F a, F b)$ $f \in \operatorname{Hom}(a, b)$ $\sigma_{0} \in C_{2}, F b \in C_{2}$ $f \longmapsto$ Ff
If $f: a \rightarrow b, g: b \rightarrow c$ then we require

$$
\begin{aligned}
& F(g \circ f)=F(g) \circ F(f) \text {, and } \forall c \in C_{1} \\
& 36 \quad F\left(i d_{c}\right)=i d_{F_{c}} .
\end{aligned}
$$

(Cartesian Product)
$\operatorname{Thm} \pi_{1}\left(X \times Y,\left(x_{0}, y_{0}\right)\right)$
12.20 in
staurbiod-sun $\simeq \pi_{1}\left(X, x_{0}\right) \times \pi_{1}\left(Y, y_{0}\right)$

$$
[\alpha] \longrightarrow([p \cdot \alpha],[q \cdot \alpha])
$$

$$
\begin{aligned}
& \text { erencrice } \\
& \begin{aligned}
\pi_{1}(T) & \cong \pi_{1}\left(s^{\prime} \times s^{\prime}\right) \\
& =\pi_{1}\left(s^{\prime}\right) \times \pi_{1}\left(s^{\prime}\right)
\end{aligned} \\
& \simeq \mathbb{Z} \times \mathbb{Z} \text {. } \\
& \text { eg. } \pi_{1}(X), X \text { is a solic toras } D^{2} \times S^{\prime} \\
& 1 \times \mathbb{Z} \\
& \pi_{1}\left(s^{\prime} \times s^{\prime} \times s^{\prime}\right)=\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}
\end{aligned}
$$

Seifert - Van Kampen
Given: $X=U \cup V, U$ and V are open, X is path-connected.
Know: $\pi_{c}(U), \pi_{1}(V)$, and $\pi_{1}(U \cap V)$.
Find $\pi_{1}(U \cup V)$
Pushout diagram.
a set of generators of A_{1}
G is a pushout. Let $A_{1}=\left\langle\Phi_{1}: R\right\rangle$
if $\exists A_{1} \xrightarrow{f_{2}} G^{\prime} \quad A_{2}=\left\langle\Phi_{2}: S^{E_{a}}\right\rangle$ set reforions
$\exists A_{2} \xrightarrow{g_{x}} G^{\prime} \quad A_{0}$ is generated by Ψ.
with $f_{1} \beta=g_{x} \alpha_{2}$, then there is a unique map $G \rightarrow G^{\prime}$ sst. the diagram commute $\beta_{n}^{\prime} \alpha_{*}=\alpha_{*}^{\prime} \beta_{*}$
 E0正\}>

Thu 12.53 (Starbird-Su)
Seifert - Van Kampen group presentution version

Let $X=U \cup V, U$ and V are open and path-connected and $U \cap V$ is path-connelted and $x \in U \cap V$
Let $i: U \cap V \rightarrow U$ be the inclusion mops.
$j: U \cap V \rightarrow V$

$$
\begin{aligned}
& \text { Let }{A_{1}}^{n} \pi_{1}(U, x)=\langle\underbrace{g_{1}, \ldots, g_{n}}_{\epsilon \Phi_{1}} \mid \underbrace{r_{1}, \ldots, r_{m}}_{\in R}\rangle \\
& \pi_{A_{2}^{\prime \prime}}(V, x)=\langle\underbrace{h_{1}, \cdots, h_{4}+}_{\epsilon \Phi_{1}} \mid \underbrace{s_{1}, \ldots, s_{u}}_{\epsilon S}\rangle \\
& \pi_{n_{1}^{\prime}}^{A_{0}}(U \cap v, x)=\left\langle k_{1}, \ldots, k_{v} \mid t_{1}, \ldots, t_{w}\right\rangle
\end{aligned}
$$

Then "G

$$
\begin{aligned}
& \text { Then }{ }^{\prime \prime}{ }^{\pi_{1}(x, x)}=\langle\overbrace{g_{1}, \ldots, g_{n}, h_{1}, \ldots, h_{t}}^{s_{t}}| r_{1, \ldots,}, r_{m, n} \\
& s_{1}, \ldots, s_{u}, i_{*} \underbrace{\left(k_{1}\right) j_{*}\left(k_{1}^{-1}\right)}_{\text {in }}, \ldots, i_{*}\left(k_{v}\right) j_{*}\left(k_{v}^{-1}\right)\rangle
\end{aligned}
$$

RUSU $\alpha(z) \beta^{-1}(z), \overline{E \in I}$

Part IV: Examples of Computations of Fundamental Group

Techniques to compute $\pi_{1}(x)$:
l. based on specific geometry of the space, e.g. S^{\prime}, D^{2}, and many simply connected spares.
2. writing the space into a Cartesian product of spaces whose fundamental group we already know.
3. showing the space is homotopy equivalent to a space whose fundamental group we know
4. find a deformation retraction to a space, e.y. $D^{2} \simeq\{0\}$, whose fundamental group we know.
5. Using Steifert - Van Kampen Tho.
6. Using Covering spaces and homotory lifting theorems in (Munkres, Slarbird-Su, and Hatcher).

Example I.
Given X as a polygon, ie. a disk D^{2}.

All loops at x, are nul-homotopic, ie., homotopic to the constant loop at x_{0} Lie. a constant loop at x_{0} means it just sits there and do nothing in the movie.)
This retraction deformation of the entire space to an one-point space, hence every point in this space is identical to X_{0}.
Also, for the one-point space, \exists ! element in the funclamental group

$$
\begin{aligned}
& \pi,\left(X, x_{0}\right)=\pi(X)=\pi(\text { disk })=\pi(p o l y o n) \\
& \\
& \left.=\pi\left(D^{2}\right)=\left\{\left[\alpha_{0}\right]\right\}=\{[e\}\}=1 \text { (or } 0\right) \\
& \forall u \in \pi_{1}\left(X, x_{0}\right), u \sim e_{x_{0}}
\end{aligned}
$$

Def. U is culled nulhomotopic.

Note that however, if two space are associated to the same fundamental group, they can be non-homeomorphic.

Exercise
13. 13

$$
\left.\begin{array}{ll}
\operatorname{ecg}, \quad l \cdot \mathbb{R} \\
\text { 2. } & \mathbb{R}^{2}, \mathbb{R}^{n} \\
\text { 3, }\{0\} \text { one point space }
\end{array} \right\rvert\, \begin{aligned}
& \text { none of } \\
& \text { them are } \\
& \text { honeomorphic }
\end{aligned}
$$

$T_{0.15} \rightarrow 4 . S^{2}$ क. $[0,1] \subset \mathbb{R}$
they are all $\pi_{1}\left(X_{i}\right)=e=\frac{1}{T}$ isomorphism
notation in Starbidel-Su

They are all similar examples of
Example 1.

More examples; $\pi_{1}(x)=1$
$x=a$ cone, $x=a$ convex set in \mathbb{R}^{n}
$X=$ a star-like spare in \mathbb{R}^{n}

One more similar example of example 1.
k_{1}

associate to the same fundamental group $\pi_{1}\left(\mathbb{R}^{3}-K_{1}\right)=\pi_{1}\left(\mathbb{R}^{3}-K_{2}\right)$ but K_{1} and K_{2} are not isotopic.

$$
\begin{aligned}
\pi_{1}\left(\mathbb{R}^{3}-K_{1}\right) & =\pi_{1}\left(\mathbb{R}^{3}-K_{2}\right) \\
& =\left\langle x, y \mid y^{3}=x^{2}\right\rangle
\end{aligned}
$$

* Observation:

Knot Group $G(K)$

$$
:=\pi_{1}\left(\mathbb{R}^{3} \backslash K\right)
$$

elements in $\pi_{1}\left(\mathbb{R}^{3} \backslash K\right)$ are equivalence classes of loops based on ambient space $\mathbb{R}^{3} \backslash K$
\Rightarrow Since the space is the complement of the knot, the elements of $\pi_{1}\left(\mathbb{R}^{3} \mid K\right)$ are homotopic classes of loops which do not intersect the knot.
\Rightarrow If a loop α does. not intersect K, then $\alpha \subset \mathbb{R}^{3} \backslash K$ (by right-hand rule)

Def A knot is an embeding $(1$ to 1$)$ from S^{\prime} to \mathbb{R}^{3}.

$$
f: S^{\prime} \longrightarrow \mathbb{R}^{3}
$$

Def Two knots are isotopic if \exists an iselyy

$$
\begin{aligned}
& f_{t}(x), t \in[0,1] \text { sit. } \\
& f=f_{0} \text { and } g=f_{1} .
\end{aligned}
$$

Def Knot diagrams, cig.

* Any diagram becomes an unknot if we change some crossing from

$$
Y \text { to } N
$$

Def Reidmeister Moves

$R 2)(\underset{\text { irrotmic }}{\leftrightarrows})^{\prime}$ or
$R 3$

The group of trefoil knot $\pi_{1}\left(\mathbb{R}^{3} \backslash K\right)$ is the

Fundamental Quandle
Arcs

$$
x y z
$$

Crossing relation
(1) $z=y \Delta x$
(2) $y=x \triangleright z$
(3) $x=z \vee y$ fundamental group of the knot's complement in space.

Knot Group
Loops

$$
f, a, b, c
$$

Conjugation relations

$$
a c=b a \Rightarrow c=a^{-1} b a
$$

$$
b=c^{-1} a c
$$

$$
a=b^{-1} c b
$$

Wirtinger presentation derived by using Reidoneister
moves.
Left and right handed trefoil knots have the same presentation!

Simplifying the previous result:

$$
\begin{aligned}
\pi_{1}\left(\mathbb{R}^{3} \mid K\right) & =\left\langle a, b, c \mid c=a^{-1} b a, b=c^{-1} a c, a=b^{-1} c b\right\rangle \\
\Rightarrow a & =b^{-1}\left(a^{-1} b a\right) b \\
b & =\left(a^{-1} b a\right)^{-1} a\left(a^{-1} b a\right) \\
& =a^{-1} b^{-1} a a a^{-1} b a \\
& =a^{-1} b^{-1} a b a \\
\Rightarrow a b & =b^{-1} a b a \\
\Rightarrow b a b & =a b a
\end{aligned}
$$

Or, if start with (2):

$$
\begin{aligned}
& a b a=b a b \\
& \Rightarrow \pi_{1}\left(\mathbb{R}^{3} \backslash K\right)=\langle a, b \mid a b a=b a b\rangle \\
& a b a a b a=a b a b a b \\
& \Rightarrow \underbrace{b a b a b a}_{a b a}=a b a b a b \\
& \Rightarrow b a a b a a=a b a b a b \quad \text { Let } x=a b, y=b a^{2} \\
& \Rightarrow y^{2}=x^{3} \Leftrightarrow\left\langle x, y \mid y^{2}=x^{3}\right\rangle, a=x^{-1} y \\
& b=y^{-1} x^{2}
\end{aligned}
$$

Some more details:

$$
\begin{aligned}
& a=\underbrace{}_{\underbrace{\frac{1}{-2}}}=b^{-1} \\
& b=y b^{2} x^{-2}
\end{aligned}
$$

$$
y^{-1} b=b^{2} x^{-2}
$$

$$
\Rightarrow b y^{-1}=b^{2} x^{-2}
$$

$$
y^{-1}=b x^{-2}
$$

$$
b=y^{-1} x^{2}
$$

$$
a=x x^{-2} y=x^{-1} y
$$

Dihedral group D_{6}.

$$
\begin{aligned}
D_{6}=\langle R, T| R^{3} & =T^{2}=e \\
& =R T R T\rangle
\end{aligned}
$$

$$
\phi: G(K) \longrightarrow D_{6}
$$

surjecti.e
homomorphism

the simplified preservation \downarrow of a trefoil is similar
(large actually since its infixed to D_{6} (finite) group.

Since all knots are homeomorphic to S^{\prime}, so done be confused with $\pi_{1}\left(s^{\prime}\right)=\mathbb{Z}$, and an urotiol has a shape like S^{\prime} and say π_{1} (unknot) $=\mathbb{Z}$. The ray to use fundomented group in distinguish knots is by considering the topological structure of the complement of a knot and by taking a based point in $\mathbb{R}^{3} \backslash K$, and use loops based at that point to investigate the space $\mathbb{R}^{3} \backslash K$. A more systematic way is using braid and solid torus (in the appendix).

Ambient space $X=\mathbb{R}^{2}$

$$
\begin{aligned}
& \exists H_{x}: \quad[0,1] \rightarrow X \\
& H_{x}(t)=(1-x) \alpha(t)+x \beta(t), \quad x \in[0,1] \\
& \pi_{1}(x)=\left\{\alpha_{0}\right\}=1
\end{aligned}
$$

Ambient space $X=\mathbb{R}^{2} \backslash\{0,0\}$

$$
B: I \rightarrow X
$$

$$
\geqslant H_{x}: I[0,1] \rightarrow X
$$

$$
\pi_{1}(x)=\left\{\alpha_{0}, \alpha_{1}\right\}=\left\langle\alpha_{1}\right\rangle \simeq \mathbb{Z}
$$

52

Example 2.

$$
y:=s^{\prime}
$$

$$
\begin{aligned}
& \alpha_{0}=\text { constant loop }=x_{0} \\
& \alpha_{1}(t)=t(\bmod 1) \\
& \alpha_{n}(t)=(n+1) t(\bmod 1) t=3 \\
& n \in \mathbb{Z}, t \in \mathbb{R} . \\
& \alpha_{-1}(t)=-t(\bmod 1) \\
& {\left[\alpha_{2}\right]_{*}\left[\alpha_{-1}\right]=\left[\alpha_{1}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi_{1}\left(S^{\prime}\right) \cong \mathbb{Z}}{\operatorname{c.f} \pi_{1}\left(S^{2}\right) \simeq e \simeq \pi_{1}\left(\mathbb{R}^{\prime}\right) \simeq \pi_{1}\left(\mathbb{R}^{2}\right)} \\
& \quad \text { all dosed los ps, s, , hood } \simeq \cdots \simeq \pi_{1}\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

at X_{0} on S^{2} can shrink t 4 using a hamotofy to their based point $x_{5} 53$

Example 3. $\left(s^{\prime} \times s^{\prime}\right)$
Given $X=T^{2}$, a torus ad surface X is a topological space.

Claim: α, β are two only generator of $\pi\left(T^{2}\right)$.
s/

read G : $a b a^{-1} b^{-1}$ notice the loops α, β are on the edges a, b

$$
\Rightarrow[\alpha] *[\beta] *\left[\alpha^{-1}\right] *\left[\beta^{-1}\right]
$$

$$
=[e]
$$

$$
\Rightarrow[\alpha] *[\beta]=[\beta] *[\alpha]
$$

$\Rightarrow \pi\left(T^{2}\right)$ is commute.
e.g. $\left[\alpha^{5}\right] *\left[\beta^{6}\right] *\left[\alpha^{-3}\right] *\left[\beta^{-7}\right]$

$$
\overline{\bar{T}}\left[\alpha^{5}\right] *\left[\alpha^{-3}\right] *\left[\beta^{6}\right] *\left[\beta^{-7}\right]
$$

$\because \pi\left(T^{2}\right)$
is commutative

$$
=\left[\alpha^{2}\right] *\left[\beta^{-1}\right]
$$

\Rightarrow in general, if $y \in \pi\left(T^{2}\right)$
then f has the form $\left[\alpha^{m}\right] *\left[\beta^{n}\right]$

$$
m, n \in \mathbb{Z}
$$

$$
\Rightarrow \pi\left(T^{2}\right)=\mathbb{Z} \times \mathbb{Z}
$$

Example $4 \mathrm{Mg}_{g}$ a g-genus torus, $g \geqslant 2$.
claim: $\pi\left(M_{g}\right)$ is non-abelian.
eng.

$$
\left\{\begin{array}{l}
\alpha_{1} \beta_{1} \alpha_{1}^{-1} \beta_{1}^{-1} \alpha_{2} \beta_{2} \alpha_{2}^{-1} \beta_{2}^{-1}=e \\
\Rightarrow\left[\alpha_{1}, \beta_{1}\right]\left[\alpha_{2}, \beta_{2}\right]=e \\
{\left[\alpha_{i}, \beta_{i}\right]:=\alpha_{i} \beta_{i} \alpha_{i}^{-1} \beta_{i}^{-1}}
\end{array}\right.
$$

which cannot be simplified

$$
\text { to } \alpha_{i} \beta_{i}=\beta_{i} \alpha_{i}
$$

Additionally.

$$
\pi\left(M_{2}\right)=\left\langle\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2} \mid\left[\alpha_{1}, \beta_{1}\right]\left[\alpha_{2}, \beta_{2}\right]=e\right\rangle
$$

Example 5

or

$$
\pi\left(R P_{2}\right)=\{[e],[\alpha]\} \underbrace{\cong\left(\mathbb{Z}_{2}, t\right)}=\{0,1\} \text {. or } \simeq\left(\mathbb{Z}_{2}, 0\right)=\{-1,+1\} \text { writ ". }
$$

* $\pi\left(R P_{2}\right)$ is a torsion group multiplication

$$
\text { since }\left[\alpha^{m}\right]=[e]
$$ grasp.

Example 6.
$\pi\left(M_{0}\right.$ bins band $)=$?
By deformation retraction on to irs
core circle $\Rightarrow \pi$ (Möbius band)

$$
[0,1] \times\left(\frac{1}{2}\right\} . \quad \simeq \pi\left(s^{\prime}\right)=\langle 1\rangle \simeq \mathbb{Z}
$$

Example 7.
$\pi($ Klein bottle $)=$?

$U_{1} \cap U_{2}=V, V$ is homeomorphie defonmeion retract to a cylinder, $\pi($ cylinder $)=\pi\left(s^{\prime}\right)$

$$
\begin{aligned}
& =\mathbb{Z} . \\
& =\langle a\rangle \\
\pi\left(U_{1}\right) \simeq\langle x\rangle=\mathbb{Z}, \pi\left(U_{2}\right) \simeq\langle y\rangle & =\mathbb{Z}
\end{aligned}
$$

By Seifert-Van Kampen

$$
\pi(x)=(\mathbb{Z} * \mathbb{Z}) / N
$$

N is normal subgroup generated by the element $\left(i_{v_{1}}\right)_{x}(a)\left(i_{v_{2}}\right)_{x}\left(a^{-}\right)$

$$
\Rightarrow \pi(X)=\left\langle x, y \mid x^{2}=y^{2}\right\rangle
$$

Conclusion:
By using Cor 52.5 Functorial Property bits countrapositive), we can classify the 47 calculating examples into the following 10 fundamental groups and use Corollary 52.5 to show that if two spaces are associating to different groups then they are not homeomorphic.
(1) $\pi_{1}(x)=1$
X can be: $[0,1], \mathbb{R}^{n} S^{2},\{0\}, D^{2}$, a cone, a convex set in \mathbb{R}^{n}, a star-like spare in \mathbb{R}^{n}, spares in a shape such ar: $X, Y, Z, T, S, C, E, F, G, H, I, J, K, L, M$, , $57 \quad N, U, V, W$.
(2) $\pi_{1}(x)=\mathbb{Z}$.
X can be: $s!\mathbb{R}^{3} \backslash K$ where K is an unknot, $\mathbb{R}^{2} \backslash\{0,0\}$, a Möbius band, a cylinder, A, D, O, P, Q, R-shape spaces.
(3) $\pi_{1}(x)=\underbrace{\mathbb{Z} x \cdots x \mathbb{Z}}_{n-\text { many }}$
X can be $\underbrace{s^{\prime} x \cdots x s^{\prime}}_{n-\text { many }}$
If $n=2, s^{\prime} \times S^{\prime}$, Or, x can be n-leaded rose \Rightarrow figure e eight or a torus
(4) $\pi_{1}(x)=\left(\mathbb{Z}_{2}, t\right)$ if $X=R P_{2}$

$$
\overbrace{n=m y}^{2 x \cdot x}
$$

(s)

$$
\begin{aligned}
& \pi_{1}(x)=\left(\mathbb{Z}_{2}, \cdot\right) \\
& \text { if } x=R P_{2}
\end{aligned}
$$

(6) $\pi_{1}(X)=\left\langle x, y \mid x^{2}=y^{2}\right\rangle$
if $X=$ a Klein bottle
(f) $\pi_{1}(x)=\left\langle x, y \mid x^{3}=y^{2}\right\rangle$
if $X=$ a trefoil knot
$(8) \pi_{1}(X)=\left\langle\alpha_{1}, \alpha_{2} \mid \alpha_{1} \alpha_{2} \alpha_{1}=\alpha_{2} \alpha_{1} \alpha_{2}\right\rangle$
if $X=$ a trefoil knot
(9)

$$
\begin{aligned}
\pi_{1}(x)=\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right| \alpha_{1} & =\alpha_{3} \alpha_{2} \alpha_{3}^{-1}, \\
\alpha_{2} & =\alpha_{1} \alpha_{3} \alpha_{1}^{-1} \\
\alpha_{3} & \left.=\alpha_{2} \alpha_{1} \alpha_{2}^{-1}\right\rangle
\end{aligned}
$$

if $X=a$ trefoil knot
(10)

$$
\begin{aligned}
\pi_{1}(X)= & \left\langle\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2} l\right. \\
& {\left.\left[\alpha_{1}, \beta_{1}\right] \cdot\left[\alpha_{2}, \beta_{2}\right]=\underset{i d}{e}\right\rangle }
\end{aligned}
$$

where $\left[\alpha_{i}, \beta_{i}\right]:=\alpha_{i} \beta_{i} \alpha_{i}^{-1} \beta_{i}^{-1}$
if $X=M_{2}$

Appendix: A systematic way to compute knot group by using braid group and Seifert-Von Kompan Thor.

Q: How to write down a fundamental group of a complement of a knot, i.e. a group of a knot?

Consicler three paths $\alpha_{1}, \alpha_{2}, \alpha_{3}$ in \mathbb{R}^{3} as follows:

$$
\begin{aligned}
& t \in[0,1] \\
& \alpha_{i}(t)=\left(F_{i}(t), t\right)
\end{aligned}
$$

$F_{i}(t) f F_{j}(t), i \neq j, v t$.
i.e. not allow X
and each t, $3!1$ crossing.

$$
\begin{aligned}
& F_{i}(1)=Z_{s(i)} \in \text { permuntertion } \\
& F_{i}(0)=Z_{i}
\end{aligned}
$$

braids

$\left.\left.l F_{i}(t), t\right)\right\rangle$ they are equivalent if. $\left(G_{i}(t), t\right) \quad \exists H_{i}(s, t), H_{i}$ is a homotopy. sit. $H_{i}(0, t)=F_{i}(t)$

$$
M_{i}(1, t)=G_{i}(t)
$$

i.e. for each s, H_{i} defines a braid.

Then we can derive a new group (braid group) law.
erg.

(i) e
(ii) inverse
(iii) associativity.
\rightarrow configuration space
for each eross-section

$$
\begin{aligned}
& O C_{k}=\left\{\left(z_{1}, \ldots, z_{k}\right): z_{i} \not z_{j} \text { if icj }\right\} \\
& U C_{k}=O C_{k} / \underbrace{s_{k}}_{\text {permutation }}
\end{aligned}
$$

$$
\Rightarrow \text { Braid group }=\pi_{1}\left(V C_{k}\left(z_{1}, \ldots, z_{k}\right)\right)
$$

Generators of Braid group.

$$
\begin{aligned}
& \wedge|||\cdots| \\
& 1 \wedge||\cdots| \\
& \sigma_{1} \\
&
\end{aligned}
$$

some properties for computations:
(commutativity)

$$
\begin{aligned}
& \sigma_{i \ldots}| | \ldots \sigma_{\jmath}, \ldots \\
& \sigma_{i}^{-\cdots}>\cdots \quad \sigma_{i}-1 \mid \cdots \\
& \sigma_{i} \sigma_{j} \quad \sigma_{j} \sigma_{i} \\
& \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \text {, if }|i-j| \geqslant 2 \text {. } \\
& \lambda / \sigma_{i} \\
& 1 N_{i+1} \\
& \sigma_{i} \cdot \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i-1}
\end{aligned}
$$

Artin Action
An Artin Action is an action of the n-strand braid group B_{n} by automosphirms on the free group F_{n}.

$$
\begin{aligned}
& B_{n}=\pi_{1}\left(\bigcup_{4} C_{k}, Z_{K}\right) Z \text { is a collection of poisers } \\
& \begin{array}{c}
\text { unoiderad } \\
\text { confignution spacee on } n \text { poinets }
\end{array} \\
& z_{1}, z_{2}, \ldots, z_{n}
\end{aligned}
$$

$$
F_{n}=\pi_{1}(\underbrace{\mathbb{R}^{2} \backslash 2})
$$

e.g. punchered 3 pts on \mathbb{K}^{2}

$F_{3}=\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ from 3 free grops, 3 generators.

Def Suppose B is an n-strand braid insicle $D^{2} \times[0,1]$.
Consider the quotient space

$$
D^{2} \times S^{\prime}=\left(D^{2} \times[0,1]\right) / \sim, \quad(x, 0) \sim(x, 1)
$$

$\Rightarrow B$ closes up to become a collection of embeded circles C_{B} in $D^{2} \times S^{\prime}$
\Rightarrow It is called the braid closure C_{B} of B.
eeg. 2-strand $B \sigma_{1}^{\prime}$ is an unknot

egg. 2 -strand $B \sigma_{1}^{3}$ is a trefoil
B:
$\lambda \rightarrow$

Lemma suppose $X_{B}=\left(D^{2} \times s^{\prime}\right) \backslash C_{B}$ is the complement of $C_{B} \subset D^{2} \times s^{\prime}$

$$
\begin{aligned}
& \text { Let } x=\{\{1\} \times\{0\}] \in\left(D^{2} \times[0,1]\right) / \sim \\
& G[1,0] \quad D^{2} \subset C \Rightarrow \mid \in D^{2} \\
& \pi_{1}\left(X_{B}, x\right)=\left\langle\alpha_{1}, \ldots, \alpha_{n}, \lambda\right| g \alpha_{k} g^{-1}=d^{(}\left(\alpha_{k}\right), \\
& k=1, \cdots, n\rangle
\end{aligned}
$$

λ is the loop $x \times S^{\prime}$
For $k \in\{1, \ldots, n\}, \alpha_{k}$ is the element of $\pi\left(D^{2} \mid\left\{z_{1}, \ldots, z_{n}\right\}\right.$ given by the loop in the below figure and
 $\phi\left(\alpha_{k}\right)$ denotes the Artin action

$$
\frac{\text { of } B \text { on } \alpha_{k} \in}{\pi_{1}\left(D^{2}\left(\left\{z_{1}, \ldots, z_{n}\right\}\right)\right.}
$$

Thin Let $D^{2} \times s^{\prime}$ be embeded as the standard solid torus in \mathbb{R}^{3}. $\Rightarrow \mathbb{R}^{3} \backslash C_{B}$ has the fundamental group:

$$
\begin{gathered}
\pi_{1}\left(\mathbb{R}^{3} \backslash C_{B}\right)=\left\langle\alpha_{1}, \ldots, \alpha_{k}\right| \alpha_{k}=\phi\left(\alpha_{k}\right), \\
k=1, \ldots, n\rangle .
\end{gathered}
$$

where $\phi\left(\alpha_{k}\right)$ is the Artin action of B on the free group $\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle$.

Idea. Take $\lambda=1$ in the lemma. (Attaching 2-cw-cells along the circle $x \times S^{\prime}$ such that the relation $\lambda=1$ in the presentation from the lemma)

Q: How to write down a fundamental group of a complement of a knot, i.e. a group of a knot?

A: idea I. any knot can be put into a braid egg.

It's a trefoil knot.
idea 2: put it into a solid torus. (a mopping torus $X \Rightarrow$ we know hor to find $\pi,(x) b$ using $V_{\text {an }}$ Kampers' (tu)

idea 3. find the fundamental grove $\pi_{1}(T \backslash K)$

eq.

$$
\begin{aligned}
& \phi\left(\alpha_{1}\right)=\alpha_{1} \alpha_{2} \alpha_{1}^{-1} \\
& \phi\left(\alpha_{2}\right)=\alpha_{1} \\
& \Rightarrow\left\langle\alpha_{1}, \alpha_{2}, \lambda\right| \lambda \alpha_{1} \lambda^{-1}=\alpha_{1} \alpha_{1} \alpha_{1}^{-1} \\
& \lambda \alpha_{2} \lambda^{-1}=\alpha_{1}
\end{aligned}
$$

(Nit's an unknot
idea 4. $\pi_{1}(T \backslash K)$ vs $\pi_{1}\left(R^{3} \backslash K\right)$

$\pi \cdot\left(\mathbb{R}^{3} \backslash K\right) \doteqdot \pi_{1}((T \cup W) \backslash K)$
Homotopy equivalent to $\mathbb{R}^{\prime} \backslash K$

By adding one more relation to cancel the bundary of the disk. W.

$$
\begin{array}{cc}
\left.\begin{array}{cc}
\pi_{1}\left(\mathbb{R}^{3} \backslash K\right)=\left\langle\alpha_{1}, \ldots, \alpha_{1}\right| & \alpha_{1}=\phi\left(\alpha_{1}\right), \\
\uparrow & \alpha_{2}=\phi\left(\alpha_{2}\right), \\
\text { take } \lambda=1 & \vdots \\
\text { for trefoil: } n=3, \text { for cadi } \\
\alpha_{i}=\phi\left(\alpha_{i}\right)=\alpha_{i} \alpha_{j} \alpha_{i}^{-1}, i \neq j
\end{array}\right\} & \left.\alpha_{n}=\phi\left(\alpha_{n}\right)\right\rangle- \text { (*) }
\end{array}
$$

in $\lambda_{K^{\prime}}$ example, $\pi_{1}\left(\mathbb{K}^{3} \backslash K^{\prime}\right) \quad(U n k n o t)$

$$
=\left\langle\alpha_{1}, \alpha_{2}\right| \alpha_{2}=\alpha_{1}, \downarrow
$$

$$
\left.\alpha_{1}=\alpha_{1} \alpha_{2} \alpha_{1}^{-1}\right\rangle
$$

$$
=\left\langle\alpha_{1}, \alpha_{2} \mid \alpha_{2}=\alpha_{1}, \quad \alpha_{1}=\alpha_{1}\right\rangle
$$

$$
=\left\langle\alpha_{1}\right\rangle
$$

$$
\simeq \mathbb{Z}
$$

\uparrow
i.i.e 2-strond braid σ, (whose $C_{B}=$ an unknot) $\begin{array}{ll}\sigma_{1}(\alpha)=\alpha \beta \alpha^{-1} & \binom{\alpha=\alpha_{1}}{\beta=\alpha_{2}} \\ \sigma_{1}(\beta)=\alpha & \end{array}$ $\sigma_{1}(\beta)=\alpha$
So, by the lemma $\langle\alpha, \beta, \lambda| \lambda \alpha \lambda^{-1}=\alpha \beta \alpha^{-1}$, $\alpha \beta \lambda^{-1}=\alpha>$
(The $\lambda \rightarrow 1$)
$=\left\langle\alpha, \beta \mid \alpha=\alpha \beta \alpha^{-1}, \alpha=\beta\right\rangle$ $=\langle\alpha\rangle$
$\simeq \mathbb{Z}$

References:

1. Munkres, J. Topology. (2000). Prentic Hall.
2. Starbird, M and SM, E. Topology Through Inquiry. (2019). AMS
3. Hatcher, A. Algebraic Topology- (2002) Cambridge. Uni.
4. Massey, W.S A Basic Course in Algebraic Topology. (1991) Springer.
5. Wild berger, N.J. Algebraic Topology (20/2).
6. Evans, J. Topology and Group (2011).
7. Sergei Tabachnikov, Knot Theory (2017).
8. Holmes, R.R. Category Theory (2019).
9. Landesman, A. Notes on The Fundemental
10. Salomone, M. Simplifying the trefoil knot group (2018).
